Chimie 40S
Devoir : vitesse de réaction et loi de vitesse

1. On utilise le cyclopropane, C₃H₆, dans la synthèse de composés organiques ainsi que comme anesthésique à action rapide. Il subit un réarrangement pour former du propène. Si le cyclopropane réagit à une vitesse de 0,25 mol/s, à quelle vitesse le propène est-il produit ?

2. L’ammoniac, NH₃, réagit avec l’oxygène pour produire du monoxyde d’azote, NO, et de la vapeur d’eau.
 4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(g)
 À un moment précis de la réaction, l’ammoniac réagit à une vitesse de 0,068 mol/(L•s).
 Quelle est la vitesse correspondante de production de l'eau ?

3. Le bromure d’hydrogène réagit avec l’oxygène pour produire du brome et de la vapeur d’eau.
 4HBr(g) + O₂(g) → 2Br₂(g) + 2H₂O(g)
 Comment la vitesse de décomposition de HBr (en mol/(L•s)) se compare-t-elle avec la vitesse de formation de Br₂ (aussi en mol/(L•s)) ?
 Exprime ta réponse sous la forme d’une équation.

4. Le magnésium métallique réagit avec l’acide chlorhydrique pour produire le chlorure de magnésium et le gaz hydrogène.
 Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)
 Durant un intervalle de 1,00 s, la masse de Mg(s) change par 0,011 g.
 a) Quelle est la vitesse correspondante de consommation de HCl(aq) (en mol/s) ?
 b) Calcule la vitesse correspondante de production de H₂(g) (en L/s) à 20 °C et à 101 kPa.

5. Quand on le chauffe, l’oxyde d’éthène se décompose pour produire du méthane et du monoxyde de carbone.
 C₂H₄O(g) → CH₄(g) + CO(g)
 À 415 °C, on a recueilli les données de vitesse initiale suivantes.

<table>
<thead>
<tr>
<th>Expérience</th>
<th>[C₂H₄O]₀ (mol/L)</th>
<th>Vitesse initiale (mol/(L•s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,002 85</td>
<td>5,84 x 10⁻²</td>
</tr>
<tr>
<td>2</td>
<td>0,004 28</td>
<td>8,76 x 10⁻²</td>
</tr>
<tr>
<td>3</td>
<td>0,005 70</td>
<td>1,17 x 10⁻⁵</td>
</tr>
</tbody>
</table>

Determine l’équation de la loi de vitesse et la constante de vitesse à 415 °C.

 2Cl₂ + H₂ → I₂ + 2HCl
 À la température T, on a obtenu les données de vitesse initiale suivantes.

<table>
<thead>
<tr>
<th>Expérience</th>
<th>[Cl₂]₀ (mol/L)</th>
<th>[H₂]₀ (mol/L)</th>
<th>Vitesse initiale (mol/(L•s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,20</td>
<td>0,050</td>
<td>0,0154</td>
</tr>
<tr>
<td>2</td>
<td>0,40</td>
<td>0,050</td>
<td>0,0300</td>
</tr>
<tr>
<td>3</td>
<td>0,20</td>
<td>0,200</td>
<td>0,0060</td>
</tr>
</tbody>
</table>

Determine l’équation de la loi de vitesse et la constante de vitesse à la température T.
7. On utilise le chlorure de sulfuryle (aussi connu sous les apppellations d’oxychlorure de soufre et de chlorure de thionyle), SO₂Cl₂, dans une foule d’applications, dont la synthèse de produits pharmaceutiques, de plastiques caoutchoutés, de colorants et de rayonne. On a étudié la vitesse de décomposition du chlorure de sulfuryle à une certaine température. SO₂Cl₂(g) → SO₂(g) + Cl₂(g)

<table>
<thead>
<tr>
<th>[SO₂Cl₂] (mol/L)</th>
<th>Vitesse initiale (mol/(L·s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,150</td>
<td>3,3 × 10⁻⁶</td>
</tr>
<tr>
<td>0,300</td>
<td>6,6 × 10⁻⁶</td>
</tr>
<tr>
<td>0,450</td>
<td>9,9 × 10⁻⁶</td>
</tr>
</tbody>
</table>

a) Écris l’équation de la loi de vitesse de la décomposition du chlorure de sulfuryle.

b) Détermine la constante de vitesse, k, de la réaction avec les unités appropriées.

8. Considère la réaction suivante.

2A + 3B + C → produits

On a découvert que cette réaction obéit à l’équation de la loi de vitesse suivante.

Vitesse = k[A]^2[B][C]

Reproduis le tableau ci-dessous dans ton cahier de notes. Utilise ensuite les renseignements donnés pour prédire les valeurs manquantes. N’écris pas dans ce manuel.

<table>
<thead>
<tr>
<th>Expérience</th>
<th>[A] initiale (mol/L)</th>
<th>[B] initiale (mol/L)</th>
<th>[C] initiale (mol/L)</th>
<th>Vitesse initiale (mol/(L·s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,10</td>
<td>0,20</td>
<td>0,050</td>
<td>0,40</td>
</tr>
<tr>
<td>2</td>
<td>0,10</td>
<td>(a)</td>
<td>0,10</td>
<td>0,40</td>
</tr>
<tr>
<td>3</td>
<td>0,20</td>
<td>0,050</td>
<td>(b)</td>
<td>0,20</td>
</tr>
<tr>
<td>4</td>
<td>(c)</td>
<td>0,025</td>
<td>0,040</td>
<td>0,45</td>
</tr>
<tr>
<td>5</td>
<td>0,10</td>
<td>0,010</td>
<td>0,15</td>
<td>(d)</td>
</tr>
</tbody>
</table>